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Thiourea catalysis of NCS in the synthesis of a-chloroketones
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Abstract

Thiourea catalyzes NCS a-chlorination of alkyl ketones to provide a-chloroketones in very high yields at exceptionally rapid reaction
speeds.
� 2008 Published by Elsevier Ltd.
Table 1
Chlorination of styrene with thiourea/urea catalysts in water
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Entry Solvent NCS
(mmol)

Catalyst
(mmol)

Reaction
time

Conv./
yield (%)

Molar
ration,a

4:5

1 MeOH 2.5 — 72 h 100 53:1
2 MeOH 4.0 2 (0.3) 72 h 78/— 12:1
3 MeOH 4.0 3 (0.3) <5 min 100/— 3:1
4 MeOH 3.0 3 (0.3) <5 min 100b 4:1
5 MeOH 2.5 3 (0.2) <5 min 100b 5:1
6 MeOH 2.5 3 (0.05) <5 min 100b 9:1
7 MeOH 2.5 3 (0.02) 10 min 100b 10:1
8 MeOH 2.0 3 (0.02) 20 min 100b 11:1
9 MeOH 1.2 3 (0.02) 20 min 100/90c 53:1

10 DCM 4.0 3 (0.3) 48 h 62/— 13:1
11 THF 4.0 3 (0.3) 48 h 67/— 11:1
12 EtOAc 4.0 3 (0.3) 8 h 100/— 4:1
13 MeCN 4.0 3 (0.3) 4.5 h 100/— 3:1

a Molar ratio determined by 1H NMR.
b The yield of mixture of 4 and 5 was 100%.
c 90% yield of 4.
a-Chlorinated carbonyl compounds are important inter-
mediates in organic synthesis because they can be con-
verted into a diverse array of molecules.1,2 They also
serve as metabolically more stable alternatives to hydrogen
and methyl functionality in drugs without loss of therapeu-
tic efficacy.3 Such benefits have created considerable syn-
thetic interest in chlorination catalysis including the
innovative use of organocatalyts,4–10 Lewis acids,11,12

amberlyst,13 transitional metal complexes14,15 and inor-
ganic reagents.16–18 However, the need remains for a faster
reaction that provides chlorides in higher yields. To
address this desire we sought to exploit the capacity of
thiourea to catalyze the reactions of N-halosuccinimides,
demonstrated with chlorohydrin and b-chloroether
synthesis.19,20

Thiourea and its derivatives activate nitro, imine and
carbonyl functionality via hydrogen bonding in organocat-
alytic reactions,21–39 whilst reactions that involve N-halo-
succinimides are catalyzed by Brønsted acids.40 We
speculated that NCS41 could be activated by thiourea
hydrogen bonding to NCS oxygens.19

The non-catalyzed a-chlorination of ketones (e.g., 1) is a
slow reaction (Table 1, entry 1)42 and whilst the addition of
urea retarded the reaction further (Table 1, entry 2), the
inclusion of thiourea gave a dramatic increase in the reac-
tion rate (Table 1, entry 3). However, a significant amount
0040-4039/$ - see front matter � 2008 Published by Elsevier Ltd.
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of the dichloride (5) was observed. Chemoselectivity was
improved with the use of less NCS and thiourea, with a
reduction in the reaction time (Table 1, entries 4–9). It
was hoped that the examination of alternative solvents
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(Table 1, entries 10–13) would speed up the reaction, but
protic polar methanol proved optimal. This is rationalized
by further hydrogen bonding of methanol with thiourea to
give even stronger hydrogen bonds.20

These refined conditions (Table 1, entry 9) were clearly
effective with comparatively little organocatalyst (2%/
mmol). They were applied to a variety of substrates (Table
2). Acyclic dicarbonyl 6 was chlorinated at the slowest
reaction rate (Table 2, entry 1) and gave a small amount
of the dichloride in addition to the chloride. Other cyclic
ketones proved more fruitful, with tetralone 7 twice as fast
as indanone 1 at chlorination and gave a higher yield
(Table 2 entry 2). The methoxy derivative (8) was slower
(Table 2, entry 3) than 7. A range of more acidic cyclic
Table 2
Thiourea catalyzed a-chlorination reactions of ketones
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a In this case only 1.2 mmol of NCS was employed, but an optimal yield of the
efficiency were the same, 2.0 mmol of NCS would give the dichloride in 85%
1,3-diketones and b-ketoesters were studied. A clear trend
was discernable with 1,3-diketones reacting very rapidly
(Table 2, entry 4), faster than b-ketoesters that reacted fas-
ter (Table 2, entry 5) than ketones (7). The most reactive
substrate was diketone 13 that was transformed to the
dichloride in a comparable time to that for the conversion
of other substrates to chloride (Table 2, entry 8).

We have demonstrated a low organocatalyst loading
approach to a-chlorination of ketones with unprecedented
rapidity and yield under mild conditions by thiourea catal-
ysis of NCS. Polar protic solvents were ideal for such trans-
formations. A similar catalytic strategy is being applied to
other halogenations with enantioselective versions of these
reactions using enantiopure derivatives of thiourea.
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dichloride can only be obtained with +2.0 mmol of NCS. If the reaction’s
yield.
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Supplementary data

The supplementary data of experimental procedures with
1H and 13C NMR spectra for all products are available.
Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.tetlet.2008.
03.154.
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